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This paper contains an investigation of the nonadiabatic behavior of

ABSTRACT

a single nonrelativistic charged particle in two magnetic field geometries;
an exisymmetric magnetic mirror, which was investigated by both analytical
and experimental means, and a minimm-B configuration formed by the
superposition of a multipolar (Ioffe) magnetic field on an axisymmetric
magnetic mirror, which was studied only by analytical means. The nonlinear
equations of motion for a charged particle in these magnetic field
configurations were solved for lO5 sets of initial conditions on a high-
speed computer. A particle was considered to be nonadiabatic if its
"adisbatic invariant" My ~ lz/B varied by more than 5 percent during

a single interaction with the magnetic mirror in question. By defining
suitable dimensionless similarity parameters, it was found possible to
summarize the computer results in a single analytical expression, which
predicts the conditions under which nonadiabatic behavior will be observed
as a function of the particle initial conditions. This similarity
relation is a useful substitute for a closed-form solution to the

nonlinear and nonholonomic mathematical problem and may be used as a

basis for correlating experimental data.
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An experimental technique was devised to detect the enhanced particle
losses resulting from nonadiabatic particle motion in an axisymmetric
magnetic mirror. The results from a wide range of experimental conditions
were plotted in terms of the similarity parameters that were useful in
correlating the analytical results and were found to obey the same
similarity relation. This experimentally determined similarity relation
gives the conditions for the onset of nonadiabatic losses in terms of
the mirror ratio, particle energy, distance between mirrors, etc. This
relation may ﬁe used as a design criterion to assure adiasbatic confinement
in all axisymmetric magnetic mirrors of practical interest.

INTRODUCTION

One of the most\ﬁromising methods of confining charged particles in
e localized region of space is by trapping them between two "magnetic
mirrors" - regions of increasing magnetic field strength. Particles that
are confined in this general class of configurations are subject to several °
loss mechanisms, one of which results from the nonadiabatic interaction of
a single charged particle with a magnetic mirror. This paper has been
motivated by the belief that nonadiabatic losses should be understood
well enough to be avoided, before one can usefully proceed to study
collective loss processes.

It is helpful to distinguish three types of individual particle losses
from magnetic mirrors, which are illustrated by the schematic diagram of
velocity space in Fig. 1: (1) adiabatic losses, which occur when the

velocity vector falls within the escape cone in velocity space given byl

-1
61 = SIN ~ /Ry » (1)



where Ry = Bpin/Bmax» On the magnetic field axis, (2) nonadisbatic losses
which occur after a single interaction with a magnetic mirror, and result
from an increase in the size of the loss cone above its adiabatic value;
such particles would have velocity vectors in the upper right of Fig. 1,
and (3) nonadiabatic losses resulting from a random-walk multiple-
reflection diffusion of the particle velocity vector from the confined
region in the upper left of figure 1 across the boundary OABC into the
loss region. Such losses would be a result of nonadiabatic effects and
not of collisions. In this paper, only losses of the second type are
investigated.

The method of similarity analysis has been applied to the problem of
determining under what conditions single interaction nonadiabatic losses
will occur from the magnetic mirror configurations that were studied.

As unde;stood in this paper, similarity analysis consists of defining
nondimensional variables that characterize the physical system under
study and then relating these similarity parameters to form analytical
expressions, or "similarity relations", which describe the behavior of
the system. This method has been successful in describing diverse
phenomens in the fields of aerodynamics and heat transfer, for example,
where the phenomena of interest are either too camplex to be amenable
to rigorous mathematical treatment, or are described by nonlinear equations
that do not admit of a rigorous and general solution.
ANATYTTCAL PROGRAM
Previous Investigations
The equations of motion for a charged particle in a magnetic mirror

. .. . 2,3
are nonlinear, and, if the "adiabatic invariant” ~’



(2)

is constrained to vary by less than a specified amount, these nonlinear
equations of motion are subject to a nonholonomic (inequality) constraint.
The general mathematical problem has been studied by many investigators,
nearly all of whom linearize the equations of motion by assuming that €,
the ratio of the raduis of gyration of the particle to the characteristic
length of the magnetic field, 1is muéh less than unity. A discussion of
this approach is given by Northrop4 and by meny of the references cited
therein. The result of these investigatlions is that, if € 1is small
in the preceding sense, the adiabatic invariant My is a constant of the
motion, and the particle reflection conditions are then predictable in a
6

manner originally outlined by Fermi5 and Alfven . It will be shown

subsequently that € is a similarity parameter of the problem if

= (RL> mv 1 2mvV (3)

€ - = —_—
Zo | €Bgylo Bavlo | e

Where V is the total particle energy in electron volts, Bgy = %(Bmin¢+iBmax),
the average magnetic field on the axis, and Z, 1is the axial distance ‘
between Bpin and Bpgy-

A few investigators have relaxed the requirement that e be small,
and have attempted to predict the magnitude of the variation in M4 for
various magnetic fields. One such investigation was that of Grad and
van Nortonz who have derived an expression for AM, in an ldealized cusp
geometry. Their results depend on the geometry of the magnetic field

assumed as a starting point and do not appear to relevant to the magnetic



bottle configurations of interest in the present study.

Yoshikawa8 derived an expression for AM, as a function of € by a
perturbation procedure and was able to show that, in a magnetic mirror,
AM4 is proportional to ez for small values of €. TUnfortunately, his
results are not suitable for comparison with the present work, in which
a single value of AW%: was chosen as a basis for computation.

In addition to the work of Yoshikawa, computer studies of the exact
nonlinear problem have been reported by Garren, et al.9 and by the present

authorz’s.

The study by Garren et al. covered approximately 100 sets of
initial conditions and produced the important result that the escape cone
for one or a few reflections of the particle is larger than that predicted
in Eg. (1) by the adiabatic theory. Not enough sets of initial conditions
were considered in the Garren, et al. study to draw conclusions about the
systematic trends of all the variables of interest in the problem. The
previous computer study by the present authorz’3 covered SXlO4 sets of
initial conditions for a wide range of conditions in an axisymmetric
magnetic mirror field. The results of this study had to be summarized
in graphical form, but did give information about the systematic trends
of the phenomena of interest.
Analytical Formulation of Problem
The basic axisymmetric magnetic field assumed in the numerical

computations is that used previously in references 2, 3, and 9, whose

vector potential is given by

B2
Ag = ax OE% + DiIi(a)cos n] ) (4)



where a and 7 are the dimensionless radial and axial coordinates,
a = nr/ZO, N = ﬂZ/Zo, I, is the Bessel function of imaginary argument,
and

Rm -1

T (5)

Dl =

Equation 4 gives an infinite series of magnetic bottles that are generated
by a current flowing azimuthally in a cylindrical sheet &t radius r = Zo
and that is sinusoidally modulated in the z-direction. These magnetic
bottles are a good approximstion to those in laeborstory spparatus if
oL 1.0

The multipolar magnetic field that was added to the preceding
axisymmetric field is generated by n pairs of infinitely long currents
located on & thin cylindrical rcurrent sheet of radius r,. This current is

assumed to be spread out in azimuthal angle and to flow in the n-direction.

The vector potential of the multipolar field is then equal to

14
Br
A =2 O(—i—)sin ne, (6)

z n o

where By is the magnetic field intensity at the multipolar current
sheet due to the multipolar field alone, and «, is the nondimensional
radius of the multipolar current sheet at. r = rg.

If the time is nondiménsionalized with respect to Wy 42 the frequency

of gyration based on B the dimensionless time is given by

av?’

eB..t
= _ SPay
T=w b= — (7)

If the derivative with respect to the nondimensional time T 1is denoted
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1
by ', i.e., dofdT = &, the Lagrangian may be written

eng. g 1f i
. . . ; ' '
L = % m(r2 + 2 + Zz) +e(A: v) =-———————-{—[§2 + al9® + nZ + a?é]

w2 \Z
1 D2 n'
+ DyagI;(a)cos n + == an sin né ¢, ' (8)
where
2 .
Dy=—m " (9)
Bava%fl w1 (By + 1) -

and B 1is related to the radial mirror ratio

-1
5 .Bm@)n . (10)
Bmin\To

]

The dimensionless equations of motion are then

2 1 1 + n-1

1 '
@ - af” - ag - DyasI (a)cos ¢ - Dona “sin né = O, (11)

(1] 11 1 t . 1 t ne=l
ab + 26a + - DlnIl(a)s1n n + DyaIy(a)ecos n - Dona” “cos nd = O,

and

% + Dzéap-lsin né + Dzéancos nd + DlaéIl(a)sin n = O. (13)

It is worth noting that the preceding equations of motion are
intrinsically nonlinear. If the field-defining constants Dy and Dy
were set equal to zero, the motion would be that of a particle moving
in the uniform magnetic field of an infinite solenoid. A perturbation
approach is not indicated, since it would necessarily restrict Dy and
Dz to small values and exclude those large variations in the magnetic
fields that are most effective in confining a plasma. The only feasible
way of studying the nonadiabatic variations of M4 is to solve the

preceding set of equations on a computer by numerical integration,

(12)
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pending the unlikely event of a nontrivial, closed-form, general solution
of these equations.
Method of Computation
In the numerical computations, a particle was injected in the direction
of +4n at the midplane 71 = 0 and its motion followed until it was reflected,
until it escaped through the magnetic mirror et n = % , or until it became
nonadiabatic. The position and velocities corresponding to each trajectory

point from the computer solution were used to calculate the kinetic energy

b\ (14)

1]
R
Q
D
+
=3
H
a
m

and the adisbatic invariant My at each trajectory point. The constancy
of the kinetic energy was used as a check on the round-off errors in the
computation.

It M4 at a given trajectory point was elther higher or lower than
all previous wvalues, the previous extreme value was replaced with the

new extreme value. When the ratio of the extreme values of M, was

_Ma, nignh - M4, 10w

M4, low

AM, > 0.05, (15)

the particle was considered to be nonadiabatic, and the computation of
that particular particle was terminated. The azimuthal angle 6 was set
equal to zero for all but a few cases, since a set of computations for -
various values of 6 1indicated that a particle was most nonadiabatic if
it was injected at 6 = O.

The 20 sets of velocity initial conditions listed in Table I were
used for all computations. These initial conditions lie on the +n

hemisphere in velocity space, whose radius is scaled by the factor e ,



as indicated by Eq. (14). The dependent variable of the numerical
computations was F, the fraction of the 20 "particles" that were
adiabatic for given values of the initial conditions «, 6, 1, e,
Dl(Rm), Dy(8), and n. These 20 points gave essentially the same
results as the 85 used previously in references 2 and 3. Fewer than
20 initial conditions did not satisfactorily simulate an isotropic
velocity distribution in velocity space.

Correlating the Results of the Numerlical Computations

In the numerical computations, the initial nondimensicnal radius
o was assigned eight values over the range 0.05 < a < 2.50; the adlabatic
parameter € assumed six values over the range 0.01 £ ¢ < 0.06; the
parameter Ry took on from six to twelve values over the range 0.1 < Rm <
1.00; the parameter & assumed six values over the range 0. < & < 1.50,
and the parameter n took on two values, n = 2 (quadrupole configuration),
and n = 3, (hexapole configuration). This came to about 5000 cases, or,
since there are 20 trajectories per case, lO5 individual particle
trajectories. A limited number of computations were made for n > 3 and
6 *+ O, to assess the influence of these parameters on F, the fraction
adiabatic.

Clearly, such a mass of data connot be properly interpreted without
some means of correlating it, so that the relative importance of the
variables and their systematic relation to one another is evident. The
dimensionless variables «, €, Rm’ 5, n, and F are a set of
similarity parameters for the problem. A sample similarity plot will be
discussed to illustrate the method of correlating the data. In Fig. 2

is shown a plot of F, the fraction adiabatic, as a function of the mirror
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ratio Rm,tfor the particular values b = 0.25, n =2, a= 1.50, and
€ = 0.02. The seven values of Rm plotted in Fig. 2 represent seven
different computer runs, each of which used the 20 sets of initial
conditions listed in Table I.

The value of R, corresponding to F = 0.10, 0.5, and 0.9 adiabatic
was read off Fig. 2 and plotted in Fig. 3, which also contains data from
five other plots similar to Fig. 2, over the range 0.01 < ¢ < 0.06. The
data for a given percentage adiabatic lie along a straight line, which

implies a similarity relation of the form

Ry = (%)A : (16)

In order to improve the objectivity and precision of the curve fitting

of this data, a computer program was devised that fitted a least-squares
straight line to the logarithms of ¢ and Ry . TFigure 3 illustrates

the particular values n =2, B = 0.25,v aﬁd o = 1.50. The similarity
relation of Eq. (16) held for all values of n, &, F, and «. investigated.

The parameters A and e were cross-plotted as functions of o and

@)

F, and it was found that Eq. (16) can be expressed in the form

[ ‘JAoa(1-F)D5exp[Koa(1-F)D4]
€

(1 - F)D6 + co(1 - F)D6

, (17)

where Cqys C2, D5, and Dg are functions of &', 8 , and n , and are listed

on Teéble II. The paraﬁeters A D3 , K. , and Dl are functions only

oa.’ ) (o]
of n and & , and are listed on Table III. Equation (17), which was
derived by an empirical process of curve fitting, is the desired

similarity relation that, together with the values of the constants listed

in Tables II and III, summarizes the behavior of the approximately lO5
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particles whose trajectories were followed by numerical computation.

Equation (17) may be thought of as a particular solution to the
original nonlinear and nonholonomic mathematical problem. The
procedure used here makes it possible to test how well Eq. (17) agrees
with the exact solutions from which it was derived. The agreement of
the exact soltuions with the value calculated from Eq. (17) was measured
by the quantity

Ro.e -;Rmu
A= —2= = (18)
Rm, e

where Rm is the value calculated by substituting the appropriate value
of € and the corresponding parameters from Tables II and III into
Eg. (17), and Rm,e is the mirror ratio from the exact computation, taken
from the raw data charts such as Fig. 2. The number of cases in each
interval of A is shown in Fig. 4. The distribution of error in Fig. 4
in roughly Gaussian, with a standard deviation of #6% It is not possible
to distinguish, in the present investigation, between errors caused by
interpolating between the computer-derived data points on the raw data
plots similar to Fig. 2, and errors which come about because Eg. (17)
is not a general solution to the nonlinear and nonholonomic problem.
It is interesting to note that most, if not all, of the 6% error could
be explained by interpolation errors on the raw data plots,

The results of the numerical computation cannot be expected teo
correspond exactly to the results obtained in real devices for at least
two reasons: (1) The definition of adiabaticity, AM, =< 5%, is an arbitary
one, and there is no a priori reason to expect this particular value

of My to be intimately related to whether or not an ensemble of
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particles are reflected or not. (2) The magnetic fields assumed in the
computations were chosef for mathematical simplicity, and, especially for
extreme values of the parameters defining them, do not correspond to actual
devices. Equation (17) is useful because it suggests the similarity
parameters that should be used in expressing the results of laboratory
experiments on nonadiabatic particle motion.
EXPERTMENTAL, PROGRAM
Results from Previous Experiments

The data relating to adiabaticity from previous experiments are plotted
in Figs. 5 and 6 in terms of the similarity perameters ¢ , Rm , and o .
For later reference, the best-fit curve for the data of the present
experiment is also shown.

A study of particle confinement was reported by Gibson, Jordan, and

Lauér,lo

who trapped MEV positrons for several seconds in the magnetic
bottle formed between two current loops. They were able to measure the
decay of the positron density that resulted from the multiple-reflection
nonadiabatic diffusion of the velocity vectors into the escape region of
velocity space. It should be emphasized that even the most nonadiabatic
case shown in figures S5 and 6 for this experiment refers to particles that
were confined for several seconds on the average, so that multiple-reflection
nonadiabatic diffusion into the loss region is a relatively slow process
on the time scale of a single reflection between mirrors.

A similar experiment was reported by Rodionov,ll who also studied the

nonadiabatic losses of positrons from a magnetic bottle configuration.

His data for adiabatic motion lie between the solid squares in Fig. 6,
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and for nonadiabatic motion between the open squares in the same figure.
Unfortunately, the nature of the apparatus and the experimental technique
severely limited the accuracy with which the variables were measured.
Alexeff12 has reported adiabatic confinement for the conditions
plotted as the solid right triangles in Figs 5 and 6. This experiment
consisted of energetic electrons trapped between magnetic mirrors.
Presumably the only loss mechanism operating in this experiment was
collisional srcattering into the loss cone, although the method of
distinguishing between nonadiabatic and collisional losses was not reported.

A. C. England and his colleaguesls’14

have reported the behavior

of microwave heated electrons in the "EPA" and "PTF" mirror machines at
Oak Ridge. In both machines, there was a core of ~100 KEV electrons near
the axis that appeared to be adiabatically confined, and higher energy
electrons - in the MEV energy range - near the outskirts of the plasma
that appeared to be subject to nonadisbatic losses. The energy of the
electrons that were subject to nonadiabatic losses was uncertain by about
a factor of 2. The range of values for which nonadiabatic motion was
observed is plotted as the open triangles in Fig. 6. The solid triangles
represent conditions under which adiabatic motion was observed.

The experiments reported in references 2 and 3, unlike the experiments
described in the preceding paragraphs, were designed to study a single
interaction of a particle with a magnetic mirror. The experimental teclnigue
used in these experimeﬁts was crude, since it only attempted to measure

the conditions under which nonadisbatic losses became large compared

with the usual adiabatic losses. The experimental technique was not
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sufficiently sensitive to measure the onset of nonadiabatic losses, as was
done in the experiments reported below; and this fact explains the
discrepancy with the current experiment. The data from references 2 and

3 are plotted as diamonds in Fig. 5. These diamonds mark the adiabatic-to-
nonadiabatic transition, and correspond to the point between the solid and
open symbols in the other experiments. The apparatus used in references

2 and 3 restricted the data to radii very close to the axis of the
magnetic field.

The incompleteness of the previous experimental results made it
desirable to measure systematically the € appropriate to the adiabatic-
to-nonadiabatic transition as a functicn of the mirror ratio Rm and the
average radius at which the particle moves, o . Such a series of
experiments was undertaken, subject to the constraint that only axisymmetric
geometries could be investigated with the existing apparatus.

Experimental Apparatus

The ion source used in this experiment was a "modified Penning source"”,
similar to that described by Meyerand and Brown.15 This source has the
useful property that it will provide a beam of ions of any gaseous material,
and can be reconnected to operate as an electron gun. The elements of this
ion source are shown in Fig. 7. About half the data was taken with He+ ions,
half with electrons, and two runs with Ne ions. The ion collector consisted
of a Faraday cup with a 6.4-mm-diameter hole in the end that faced the ion
source. A grounded disk with a 6.4-mm-diameter hole was mounted on the end
of the Faraday cup. The axis of the Faraday cup was coincident with the

axis of the ion source, and this common axis could be positioned at any
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desired radius parallel to the axis of the magnetic field. The background gas
pressure was no higher than 5x10™7 torr, and the particle currents were, in all
cases, below 10 pA. The charged particle densities were too low for collisions
or other collective effects to influence the outcome of the experiment.

The axial profile of the magnetic field was measured with a 1 percent
accuracy rotating-coil Gaussmeter, which yielded the experimental parameters
Rys Bgys and Z,. A schematic drawing of the electrical connections of the ion
source and collector is shown in figure 7. The collector was kept biased at
+75 V de to suppress secondary electrons. The ion source could be biased to
18 KV above ground, which provided an electric field between the ion source and
collector. It can be shown that the electric field existing between the source
and collector will not significantly influence the angular spread of the ion
velocity distribution in velocity sbace. The ions had energies below 100 EV on
leaving the source, and the ion curFent from the source was not a function of the
bias voltage above a bias voltage'gf 700 volts. The y-axis of an X-Y recorder
was connected to indicate the current flowing to the collector, while the x-axis
indicated the ion source bias voltage. When the ions entered the Faraday cup,
they were no longer acted on by electric fields and interacted only with the
magnetic field. The radius gyration of the ions was, in all cases, less than
the inner diameter of the Faraday cup, and the length of the cup was in all
cases longer than Zo'

In the present series of experiments, all variables except the ion
energy were held constant during a given run. Ions were accelerated to
a gi?en energy, entered the Faraday cup, interacted with the magnetic

field, and a certain fraction were reflected back out the same 6.4-mm-diameter
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hole through which they entered. In the adiabatic regime of operation,
the fraction of particles reflecting back out of the Faraday cup was
independent of the ion energy and hence independent of ¢. As the energy
increased to the point where nonadiabatic motion began, the escape cone
opened up, and fewer particles were reflected back out the hole in the
Faraday cup. The indicated ion current to the collector is therefore
constant up to a critical energy, corresponding to point A in Fig. 1,
and then increases as the escape cone opens up.

This behavior is illustrated on Fig. 8, which is one of the X-Y
recordings that form the raw data of this experiment. In the region
below about 4 KV, the collected ion current is constant; so that the escape
cone angle is not a function of energy. Above 4 KV, however, the
collected ion current is a ramp function, which indicates that the escape
cone angle was opening up as the particle energy (and hence € ) increased.
The energy at which the ion current is no longer a constant is the
"critical" energy, above which nonadiabatic losses occur. It should be
noted that this experimental technique gives information only about a
single interaction of a particle with the magnetic barrier in question.

Experimental Results

The experimentally obtained values of € , which correspond to the
critical energy of point A in Fig. 1, have been plotted as a function of
Rp in Figs. 9 and 10 for two representative values of a . A representative
curve from the computer results, to be discussed later, is also shown.
Data were taken at eight different values of a . The data obey the

similarity relation of Eq. (16) and were fed into the same least-squares



17

curve-fitting program used to fit the analytical results. The "best fit"
valups of A and ¢, for each of the eight radii investigated are

listed in Table IV, along with the number of experimental data poilnts
taken at the radius in question. i

The uncertainties in measuring the particle energy, Bav and ZO
give rise to error limits on € of no more than Ac¢ = $15%. The
errors in the radial position were such as to give Ax = £0.15, a fixed
rather than a proportionasl error. The range of the principal experimental
variables was 0 £ ¢ £ 1.75, 0.175 £ Rm,s 0.945, 0.059 < Zy £ 0.241 m,
1/1837 <m < 20 AMU) 0.029 < Bpy £ 1.89 WB/mz, and 1500 <V < 7800 eV.

The parameter A from the experimental curves is shown plotted as

a function of o in Fig. 11(a). The parameter A can be correlated by

the relation
A = aef1” (19)

where Ay = 0.388 and Py = -0.167. The parameter €, for the
experimental data is shown plotted as a function of a« 1In Fig. 11(b).

€, can be correlated by the relation
€O = €O:|__eP2cL (20)

where €o1 = 0.343 and Py = 0.075. The anomalous point at a = 1.50
was discarded in both correlations, since it was based on many fewer
experimental points than those for which « < 1.00. The results of the
current series of experiments can be summarized in analytic form by the

statement that single interaction nonadiabatic losses will not occur in



axisymmetric geometries if
-0.167a
s (21)

c 0. 388e
B 2 (o_ 54560.07&1)

where the present experiments have mapped out the curve given by the
equality sign.

The line which best fits the results of the present experiments is
plotted in Figs. 5 and 6 for comparison with the findings of previous
experiments. In the author's opinion, the instances of disagreement
are gttributable to the presence of one or more of the following factors
in the previous experiments: (1) uncertainties in the determination of
the relevant experimental variables, (2) inability to distinguish between
nonadiabatic losses and losses due to other effects, such as collisions,
for example, (3) inability to detect nonadisbatic losses until they
became comparable to the adiabatic and/or collisional losses (corresponding
to point "B" in Fig. 1), and (4) relativistic effects, which were present
in the experiments reported in references 10, 13, and 14.

Within the limitations of the data, one may conclude that the
analytical problem considered here and the preceding experimental results
are both correlated by the same similarity parameters and by the similarity
relation of Eq. (16). It therefore appears that the similarity relations
and the similarity parameters appropriate to the problem of nonadiabatic
particle losses have been establishéd, and that the constants have been
found for the special case of the axisymmetric geometry. The fact that the
critical values of € for electrons, He+ ions, and Net ions, with their

greatly different masses, fall along the same similarity relation is
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further evidence in support of this result.
DISCUSSION AND CONCLUSIONS

In the introduction, nonadiabatic particle losses were divided into
single interaction nonadiabatic losses and multiple reflection nonadiabatic
losses. Single interaction nonadiabatic losses were observed in the
numerical computations of Garren, et al.gin the experiment reported in
references 2 and 3 and in the present series of experiments. The latter
employs an experimental technique that demonstrates this mode of
nonadiabatic loss. Multiple-reflection nonadiabatic losses were cbserved
in the experiments of Gibson, Jordan, and Lauerlo and of Rodionov.ll In
both experiments the confined positrons were not lost until after
approximately lO8 reflections. The existence of these two modes of
nonadiabatic particle loss may therefore by regarded as experimentally
established.

It can be seen from an examination of Fig. 9 and Eq. (17) that,
although the numerical and experimental results obey the same similarity
relation, the numerical constants in the similarity relation are
different and yield different slopes and intercepts. In the particular
case a = 0 , shown in Fig. 9, the numerical and experimental curves
cross in the vicinity of Rm = 0.515 for F = 0.5 adiabatic, & = 0. At
this mirror ratio, at least some particles are lost when their adiabatic
invariant M4 varies by 5% during a single interaction with the magnetic
mirror. In the range 0.515 < Ry £ 1.0, the experimental points lie to the
right of the numerical curve, suggesting that in this region nonadiabatic

losses occur only if M4 varies by more than 5% during a single interaction
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with the magnetic mirror field. In the range 0 £ Rm.s 0.515, nonadiabatic
losses will occur if My varies by less than 5% during a single interaction
with the magnetic mirror.

By studying the similarity relation of Eq. (17) and its associated
parameters in Tables IT and IITI, the general trends of adiasbaticity with
the various parameters may be exhibited. If all other factors are held
constant, the critical energy (above which nonadiabatic motion occurs) is
a monotonically decreasing function of & , the radial mirror ratio. This
comes about because the multipolar contribution increases the unevenness
of the magnetic field. If all other factors are constant, the critical
energy at a& given radius in the field is a monotonically increpsing
function of n , the number of pairs of multipolar conductors. This arises
because the multipolar field is proportional to (a/aoon’l. As n heconmes
very large, the critical energy approaches that of an axisymmetric field,
as an upper bound. These findings imply that nonadiabatic losses will
increase if multipolar fields are added to a basic axisymmetric magnetic
field.

If all other factors are constant, a variation in R, of a factor
of 2 will change the critical energy by a factor of about 100. If the
critical energy is changed by a factor of 2p the critical mirror ratio
will change by about 11%. The critical energy 1is therefore a very
strong function of the mirror ratio, which implies that the selection
of a mirror ratio for a device should be a matter for careful study.

Under typical conditions, the critical energy is practically independent

of radius out to some point where it becomes monotohe decreasing, if all
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Other factors are held constant.

Stability considerations play a rcle in determining the optimum value
of ¢ . It has been shown by Kuo, et al.16 that the stability of a plasma is
enhanced if € > 0.10 (the so-called finite Larmor radius stabilization)
and that this stabilizing effect is not present if ¢ =~ 0 , as the
adiabatic theory requires. Finite radius of gyration stabilization there-
fore requires ¢ to be as large as possible. On the other hand, if e 1is
too large, the resulting nonadiabatic losses will enlarge the escape cone
and make the velocity distribution of the confined particles more

anisotropic than it would otherwise be. Harrisl

7 has shown that anisotropies
in velocity space promote the growth of instabilities. Therefore, ¢
should be made small enough to avoid nonadiabatic losses, in order to
reduce anisotropies in velocity space to a minimum. From the preceding
discussion, it is evident that the above stability considerations dictate
that e should be as large as possible, without being so large that non-
adiabatic losses occur. A consideration of economic factors leads to much
the same conclusion, since an adiabatic mirror with large e is less
expensive than an adiabatic mirror with small € .

The experimental results given in the preceding paragraphs can serve
as criteria for the design of axisymmetric magnetic mirrors that will
suffer no nonadiabatic particle losses and that will be a best compromise
between the stability constraints. To confine the maximum number of
particles that the adiabatic theory allows, the apparatus should operate

under conditions such that Eq. (21) is satisfied. If the nonadiabatic losses

caused by multiple-reflection diffusion of the velocity vector are to be
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avoided, the data of Gibson, Jcrdan, and LauerlO in Fig. 5 indicate that
the critical values of Rm given by Eq. (21) should be increased by
about 8%.

The preceding experimental results were obtained in an axisymmetric
magnetic field and must be applied with caution to the combined axisymmetric
prlus multipolar magnetic fields used in the numerical computations. Since
the combined field is less adiabatic than an axisymmetric magnetic field
alone, the experimental results should be regarded as an upper bound on
€ , or a lover bound on Rm , Tthe exceeding of which will certainly result
in nonadiabatic losses from the combined geometry. The quantitative effects
of & and n on the adiabatic-to-nonadiasbatic transition line remains to
be investigated in a further series of experiments.
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TABLE I. - VELOCITY INITTAL CONDITIONS OF 20 PARTICLES

USED TO DETERMINE FRACTION OF PARTTICLES ADIABATIC

[Particles lie on a hemisphere

in velocity space,

the radius of which is scaled by the factor e.]

3 & b
0. 0. 7071068 | 0. 7071068
.05 . 7062223 . 7062223
.10 . 7035624 . 71035624
.15 . 6991008 . 6991008
.20 . 6928203 . 6928203
.25 . 6846532 . 6846532
.30 . 6745369 . 8745369
.35 . 6623821 . 6623821
.40 . 6480741 . 6480741
.45 . 6314665 . 6314665
.50 .5123724 .6123724
.55 . 5905506 . 5905506
.60 . 5656854 . 0656854
.65 . 5373546 . 5373546
.70 .5049752 . 5049752
.75 .4677072 .4677072
.80 . 4242641 . 4242641
.85 . 3724916 . 3724916
.90 . 3082207 . 3082207
.95 . 2207940 . 2207940
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TABLE IT. - PARAMETERS FOR RELATION

- D5 De
€o = C(1 - F) +Cp(1 - F)

&
0.05 0.25 0.50 0.75 1.00 1.50 2.00 2.50
Ds
.0 0.0258 0.5236 | 0.3916 -- 0.2839 | 0.2536 | 0.3454 | 0.2038
.25 . 0903 . 2012 .2170 | 0.3647 . 4384 . 5492 . 4000 . 3978
.50 .5582 .5568 |11.614 .5704 | 1.0177 .8782 | 1.3626 . 2448
.75 | 1.0335 . 6847 .6195 .5220 .9346 | -.05138] .1718 . 4659
.00 | 1.2321 . 6448 .7525 | -.1263 | 1.8897 |16.622 2.4956 . 03562
.25 | 0.02667| 0.5062 | 0.2089 | 0.2235 | 0.3482 | 0.3831 | 0.6569 | 0.5988
.50 .0734 -.3534 . 0405 . 2367 .5877 .987¢4¢ | 1.5270 . 6490
.75 .05788 . 7581 .1839 .3190 . 7365 »9338 | -.4688 --
. 00 .05418| -.4583 . 3154 . 4497 .8171 | 8.5420 | 4.3001 --
.50 . 0759 .1118 . 4267 .7690 | 1.1286 - - --
De
.0 0 0 0 -- 0 0 0 0
.25 0 6.7397 | 5.2395 |15.437 0 0 3.00 0
.50 0 10.580 .7473 | 7.3325 0 0 0 6.4114
.75 0 12.635 |20.383 |12.707 0 3.0339 | 6.5305 0
.00 |11.593 15.015 |16.356 4. 3589 0 .| 1.7011 0 0
.25 0 4.9492 0 0 0 o) 0
.50 1.3711 | 4.2707 | 9.5029 0 0 0 G241
.75 0 0 6.4544 | 7.5818 0 17.078 4.2419 --
1.00 0 2.1070 |10.265 |[10.295 | 24.247 .5696 0 -
.50 0 2.3026 | 7.9846 [15.012 |16.474 - -- -
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TABLE II. - Concluded. PARAMETERS FOR RELATION
eg = (1 - IS 4 cp(1 - 7)P8
o) a
0.05 0.25 0.50 0.75 1.0 1.5 2.0 2.5
C.

0.0 [0.1776 | 0.4268 | 0.2964 | --- 0.1765 | 0.1768 | 0.180L | 0.1594
.25 | .1s68 | .1979 | .1830 | .1771 | .1737 | -1835 | .1450 | .1714
.50 | .1602 | .1641 | .4555 | .1517 | .1994 | .1802 | .2555 | .1317
75 | .1763 | .1405 | .1290 | .1214 | .1688 | .06355| .1012 | .1918

1.00 | .1s81 | .10%3 | .1200 | .oss84| .2260 | .s855 | .2627 | .1728

0.25 | 0.1699 | 0.3967 | 0.2057 | 0.1871 | 0.1635 | 0.1597 |o0.1769 | 0.1688
50 | .1737 | .ose7s| .1503 | .1507 | .1749 | .1924 | .z215 | .1339
75 | .1ee1 | .as02 | .1540 | .1356 | .1695 | .140¢ | .osze8|  --

1.00 | .1692 | .osees| .1s63 | .1317 | .1495 | .2381 | .3800 --

1.50 | .1862 | .l2e5 | .1358 | .1341 | .1455 -- -- -

Ca

0.0 5 0 0 _- 0 0 0 0
.25 0 0.3130 | 0.3459 | 0.3935 0 o |o.100 0
.50 0 6289 | .1757 | .1614 0 0 o | o0.1420
.75 0 .9573 | 1.6626 | .3435 0 1408 | .2123 0

1.00 | 0.2268 | 2.3105 | .sse6 | .2906 0 1672 | .0 0

0.25 0 o | o.2e50 0 0 0 0 0
.50 0 0.3945 | .3007 | 0.1985 0 0 o | o0.7337
.75 0 0 .2888 | .2153 o | o.2660 |o0.2191 -

1.00 0 5475 | .3704 | .2se4 | .4173 | 0981 0 .-

1.50 0 3220 | .4350 | .4688 | .4467 - - -
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TABLE III. - CONSTANTS FOR RELATIONS

D D
Ay=A, (1-F)Sandk=xk, (1-7) ¢

n| & | Ay, Dz K, Dy

210.0 |0.5895}0.0805 |-0.8004 | -0.0892
.25 .6600 | .0884 | -.8858 ] -.0510
.50 .6790 | -.1000 | -.9549 | -.0656
.75 «7286 | -.1048 |-1.0014 | -.1010

1.00 .6256 | -.4501 | -.8383 -.4837

3 0.25 ] 0.5994 | 0.1508 }-0.8116 | 0.0208
.50 ] .6304) .0674 | -.870 .020
«75 | .8308 § .0515 1 -.8266 | -.0772

1.00}| .6620| .0895 | -.8991 | -.1205

1l.50} .6752| .0386 | -.8277 | -.1182




TABLE IV. - PARAMETERS €, AND A FOR BEST

FIT TO DATA FROM PRESENT EXPERIMENT

28

a €5 A Number
of
data
points
0.0 0.3473 | 0.3854 49
4S) «3551 . 3731 48
.20 3580 3670 35
.75 «3692 3435 33
1.00 . 3725 .3265 23
1.25 4022 .2916 17
1.50 .3518 4904 6
1l.75 «4038 « 3062 6
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Figure 1. - Nonadiabatic loss regions in vefocity space. V,, transi-
tion energy at which nonadiabatic losses start to occur; \I , energy
a which substantial nonadiabatic losses occur; V4, energy at
which virtually all particles are lost nonadiabatically.
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Figure 2. - Fraction of particles
adiabatic as function of Rn
for conditions §=0.25, n=2,

a=1.50, and €-=0.02,
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Figure 4. - Number of cases within each 1% interval of A showing agreement of Eq. (17)
with actual calculated values. Total cases, 6548.
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Figure 7. - Schematic diagram of experimental apparatus.
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Figure 11. - Parameter A from experimental curves as function of a.
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Figure 12. - Parameter g, from experimental curves as function of a.
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Figure 3, - Median bond shear strength (50 percent
failed value) for four alumina spray powders on
stainless steel substrates of varying roughness.
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Figure 4, - Effect of projected test area on measured and calcu-
lated bond shear strength of powder-B coatings at two surface
roughnesses.



